Separated nano jetting and micro jetting regimes by double-pulse irradiation of a metal film: towards multiscale printing

Author:

Murali Anjali,Li QingfengORCID,Grojo DavidORCID,Alloncle Patricia,Delaporte Philippe

Abstract

The Double-Pulse (DP) version of the Laser-Induced Forward Transfer (LIFT) technique holds great potential to improve the resolution and flexibility of printing applications. In this study, we investigate the transfer of copper. A long laser pulse is first applied to melt thin copper films deposited on a transparent substrate, followed by an ultrashort laser pulse to initiate the transfer of the liquid material towards a receiver substrate. Time-resolved imaging experiments reveal that ejections from nanodrops to liquid jets with controllable diameters, from few micrometers down to the nanometers scale can be obtained with the control parameters of DP-LIFT. Comparing simulation and experiments we discuss how the ejection characteristics are governed by various factors including the shape, diameter and temperature of the melted pool created with the first long pulse. While the formation of microjets is due to the dynamical deformation of the melted film, as for the conventional LIFT process applied with liquid donors, the results indicate a different and distinct process for the formation of nanojets. We extrapolate from the observations a feature caused by the interaction of the shockwave, generated by the femtosecond laser irradiation, with the deformed surface of the pool. Ultimately, we establish the range of irradiation parameters leading to the observation of single separated microjets and nanojets. The latter are accompanied by nano printing demonstrations. Considering all accessible regimes together, a unique technological perspective is the possibility to achieve multi-scale printing from the same donor.

Funder

Agence Nationale de la Recherche

The Excellence Initiative of Aix-Marseille Université (AMU) - A*Midex, a French “Investissements d'Avenir” program

H2020 European Research Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3