Integrated photonic RF self-interference cancellation on a silicon platform for full-duplex communication

Author:

Han Xiuyou1ORCID,Su Xinxin1,Chao Meng1,Yang Xindi1,Wang Weiheng1,Fu Shuangling1,Du Yicheng1,Wu Zhenlin1,Zhao Mingshan1

Affiliation:

1. Dalian University of Technology

Abstract

In-band full-duplex (IBFD) technology can double the spectrum utilization efficiency for wireless communications, and increase the data transmission rate of B5G and 6G networks and satellite communications. RF self-interference is the major challenge for the application of IBFD technology, which must be resolved. Compared with the conventional electronic method, the photonic self-interference cancellation (PSIC) technique has the advantages of wide bandwidth, high amplitude and time delay tuning precision, and immunity to electromagnetic interference. Integrating the PSIC system on chip can effectively reduce the size, weight, and power consumption and meet the application requirement, especially for mobile terminals and small satellite payloads. In this paper, the silicon integrated PSIC chip is presented first and demonstrated for IBFD communication. The integrated PSIC chip comprises function units including phase modulation, time delay and amplitude tuning, sideband filtering, and photodetection, which complete the matching conditions for RF self-interference cancellation. Over the wide frequency range of C, X, Ku, and K bands, from 5 GHz to 25 GHz, a cancellation depth of more than 20 dB is achieved with the narrowest bandwidth of 140 MHz. A maximum bandwidth of 630 MHz is obtained at a center frequency of 10 GHz. The full-duplex communication experiment at Ku-band by using the PSIC chip is carried out. Cancellation depths of 24.9 dB and 26.6 dB are measured for a bandwidth of 100 MHz at central frequencies of 12.4 GHz and 14.2 GHz, respectively, and the signal of interest (SOI) with 16-quadrature amplitude modulation is recovered successfully. The factors affecting the cancellation depth and maximum interference to the SOI ratio are investigated in detail. The performances of the integrated PSIC system including link gain, noise figure, receiving sensitivity, and spurious free dynamic range are characterized.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Liaoning Revitalization Talents Program

Program for Liaoning Excellent Talents in University

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3