Radial basis point interpolation for strain field calculation in digital image correlation

Author:

Du Jiayi,Zhao Jian12ORCID,Liu Jiahui1,Zhao Dong1

Affiliation:

1. Beijing Forestry University

2. State Key Laboratory of Efficient Production of Forest Resources

Abstract

In order to extract smooth and accurate strain fields from the noisy displacement fields obtained by digital image correlation (DIC), a point interpolation meshless (PIM) method with a radial basis function (RBF) is introduced for full-field strain calculation, which overcomes the problems of slow calculation speed and unstable matrix inverse calculation of the element-free Galerkin method (EFG). The radial basis point interpolation method (RPIM) with three different radial basis functions and the moving least squares (MLS) and pointwise least squares (PLS) methods are compared by analyzing and validating the strain fields with high-strain gradients in simulation experiments. The results indicate that the RPIM is nearly 80% more computationally efficient than the MLS method when a larger support domain is used, and the efficiency of the RPIM is nearly 26% higher than that of the MLS method when a smaller support domain is used; the strain calculation accuracy is slightly lower than that of the MLS method by 0.3–0.5%, but the stability of the calculation is significantly improved. In contrast with the PLS method, which is easily affected by the noise and the size of the strain calculation window, the RPIM is insensitive to the displacement noise and the size of the support domain and can obtain a similar calculation accuracy. The RPIM with multiquadric (MQ) radial basis functions performs well in balancing the computational accuracy and efficiency and is insensitive to shape parameters. The application cases show that the method can effectively compute the strain field at the crack tip, validating its applicability to the study of the plastic region at the crack tip. In conclusion, the proposed RPIM-based method provides an accurate, practical, and robust approach for full-field strain measurements.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3