Lipoarabinomannan-based tuberculosis diagnosis using a fiber cavity ring down biosensor

Author:

Ullah Ubaid,Saleem Seerat1,Farooq Muddassar2,Yameen Basit1,Imran Cheema M.ORCID

Affiliation:

1. Lahore University of Management Sciences

2. CureMD Healthcare

Abstract

Despite existing for millennia, tuberculosis (TB) remains a persistent global health challenge. A significant obstacle in controlling TB spread is the need for a rapid, portable, sensitive, and accurate diagnostic test. Currently, sputum culture stands as a benchmark test for TB diagnosis. Although highly reliable, it necessitates advanced laboratory facilities and involves considerable testing time. In this context, we present a rapid, portable, and cost-effective optical fiber sensor designed to measure lipoarabinomannan (LAM), a TB biomarker found in patients’ urine samples. Our sensing approach is based on the applications of phase shift-cavity ringdown spectroscopy (PS-CRDS) to an optical fiber cavity created by two fiber Bragg gratings. A tapered fiber is spliced inside the optical cavity to serve as the sensing head. We functionalize the tapered fiber surface with anti-LAM antigen CS-35 through a unique chemistry, creating a strong affinity for LAM molecules. We measure the phase difference between the cavity transmission and the reference modulating signal at the cavity output. The measured phase is directly proportional to the injected LAM concentrations in aqueous solutions over the sensing head. Our demonstrated sensor provides a detection limit of 10 pg/mL and a sensitivity of 0.026°/pg/mL. This sensor holds promise for numerous applications in the healthcare sector, particularly in low-resource settings.

Funder

CureMD Healthcare

Lahore University of Management Sciences

Higher Education Commission, Pakistan

Publisher

Optica Publishing Group

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3