Affiliation:
1. Chalmers University of Technology
Abstract
In this Letter, we present a scheme for detecting fiber-bending eavesdropping based on feature extraction and machine learning (ML). First, 5-dimensional features from the time-domain signal are extracted from the optical signal, and then a long short-term memory (LSTM) network is applied for eavesdropping and normal event classification. Experimental data are collected from a 60 km single-mode fiber transmission link with eavesdropping implemented by a clip-on coupler. Results show that the proposed scheme achieves a 95.83% detection accuracy. Furthermore, since the scheme focuses on the time-domain waveform of the received optical signal, additional devices and a special link design are not required.
Funder
National Natural Science Foundation of China
VINNOVA
Jiangsu Engineering Research Center of Communication and Network Technology
Subject
Atomic and Molecular Physics, and Optics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献