Microwave optical limiting via an acoustic field in a diamond mechanical resonator

Author:

Ghaderi Goran Abad MohsenORCID,Mahmoudi MohammadORCID

Abstract

We investigate the generation and control of the reverse saturable absorption (RSA) and optical limiting (OL) at microwave (mw) range in high-Q single-crystal diamond mechanical resonator (DMR) embedded with many nitrogen-vacancy (NV) centers. The strain-induced acoustic modes enable mechanical manipulation of NV centers. On the basis of strain-coupling mechanism, it is shown that the saturable absorption (SA) switches to the RSA by applying the acoustic field, leading to induce the OL in the diamond through the cross-Kerr effect. We demonstrate that the OL characteristics such as, threshold, efficiency, and dynamic range can be controlled by changing either the intensity or frequency of the acoustic field. Moreover, we show that this optical limiter can amplify noiselessly the low intensity of the mw field input to the sensors and also attenuate any gain-induced noise and increase in the intensity of the mw field if it exceeds the intensity threshold. In addition, it is shown that by increasing either the number of NV centers or length of the diamond, the optical limiter can be more efficient. The physical mechanism of the OL establishment is explained using the analytical expressions, which are in good agreement with the numerical results. Our proposed acoustic-induced optical limiter can be a scheme for protecting different optical and electronic devices in mw range, remote sensing, navigation, communications, microwave heating and thermo/laser therapy.

Publisher

Optica Publishing Group

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3