Storage-assisted optical upstream transport scheme for task offloading in multi-access edge computing

Author:

Lin Xiao1ORCID,Li Yaping1,Shao Junyi2,Li Yajie3

Affiliation:

1. Fuzhou University

2. Shanghai Jiao Tong University

3. Beijing University of Posts and Telecommunications

Abstract

Multi-access edge computing (MEC) applications are often implemented in the form of task offloading, which results in an unprecedented demand for data transfers among MEC servers. However, the combination of expensive and limited bandwidth, growing peak demand, and heterogeneous requirements of mixed traffic has posed a great challenge in terms of task offloading. In this study, we present a storage-assisted optical upstream transport scheme (SOUT) to overcome this challenge. Latency-critical (LC) tasks are given preemptive priority over delay-tolerant (DT) tasks. To reduce peak demand, the storage of an MEC server is introduced to temporarily store DT tasks. Resource partitioning is performed with an adjustable boundary based on traffic fluctuation. Analytic models are presented to investigate the interplay between SOUT and the performance of tasks. Our key findings reveal that there exist two trade-offs to be considered in SOUT. To balance the trade-offs, we formulate the spectrum partitioning and storage assignment problem as an optimization model and solve it using a heuristic approach. Studies show that SOUT provides lower blocking probability for both LC and DT tasks at the cost of slight preemption and limited storage usage when compared with two state-of-the-art optical transport schemes. We further show that 60% of network expenditures can be saved by trading cost-efficient storage for expensive link spectrum resources under a certain network scenario. Overall, this study aims to provide useful insights into task offloading over elastic optical links.

Funder

National Natural Science Foundation of China

State Key Laboratory of Advanced Optical Communication Systems and Networks

Publisher

Optica Publishing Group

Subject

Computer Networks and Communications

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A SnF Scheduling Method for HFL Over Edge Computing Power Optical Network;2024 22nd International Conference on Optical Communications and Networks (ICOCN);2024-07-26

2. Dynamic slicing of multidimensional resources in DCI-EON with penalty-aware deep reinforcement learning;Journal of Optical Communications and Networking;2024-01-23

3. Parking Cooperation-Based Mobile Edge Computing Using Task Offloading Strategy;Journal of Grid Computing;2024-01-08

4. Joint Computation and Traffic Loads Balancing Task Offloading in Multi-Access Edge Computing Systems Interconnected by Elastic Optical Networks;IEEE Communications Letters;2023-09

5. Bulk Transfers With GCN Scheduling In Digital Twin Networks;ICC 2023 - IEEE International Conference on Communications;2023-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3