General strategy for ultrabroadband and wide-angle absorbers via multidimensional design of functional motifs

Author:

Yuan QiORCID,Xu Cuilian,Jiang Jinming,Li Yongfeng,Cheng YangORCID,Wang HeORCID,Yan Mingbao,Wang Jiafu,Ma Hua,Qu Shaobo

Abstract

Developing wide-angle, polarization-independent, and effective electromagnetic absorbers that endow devices with versatile characteristics in solar, terahertz, and microwave regimes is highly desired, yet it is still facing a theoretical challenge. Herein, a general and straightforward strategy is proposed to surmount the impedance mismatching in the ultrabroadband and wide-angle absorber design. A vertical atom sticking on N × N horizontal meta-atoms with conductive film is proposed as the functional motif, exhibiting the strong ohmic dissipation along both vertical and horizontal directions. Assisted by the intelligent optimization strategy, the structure dimension, location, and film distribution are designed to maintain absorbing performance under different incident angles. As a demonstration, an absorber was designed and proved in both simulation and experiment. Significantly, the over 10 dB absorption from 5 to 34 GHz is achieved in the range of 0° to 70° for both TE and TM, and even 3 to 40 GHz from 60° to 70° for the TE wave. Meanwhile, the proposed multidimensional design of functional motifs can be attached with optical transparency function at will. That is to say, our effort provides an effective scheme for expanding matching area and may also be made in optical, infrared, and terahertz regimes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

National Key Research and Development Program of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3