Affiliation:
1. Tel Aviv University
2. Moscow Institute of Physics and Technology
Abstract
Suppressing reflections from material boundaries has always been an objective, common to many disciplines, where wave phenomena play a role. While impedance difference between materials necessarily leads to a wave reflection, introducing matching elements can almost completely suppress this phenomenon. However, many impedance matching approaches are based on resonant conditions, which come at a price of narrow bandwidth operation. Although various impedance matching architectures have been developed in the past, many of them fail to produce a broadband and flat (ripple-free) transmission, particularly in the presence of strong chromatic dispersion. Here we propose and demonstrate an approach for designing an optimal matching stack capable of providing a flat broadband transmission even in the presence of significant group velocity dispersion. As an experimental example for the method verification, we used a strong modal dispersion in a rectangular waveguide, operating close to a mode cut-off. The waveguide core consists of alternating polymer sections with a variable filling factor, realized using additive manufacturing. As a result, a broadband matching in the range of 7-8GHz was demonstrated and proved to significantly outperform the standard binomial transformer solution. The proposed method can find use across different disciplines, including optics, acoustics and wireless communications, where undesired reflections can significantly degrade system’s performances.
Funder
Ministry of Defense
Russian Science Foundation
Ministry of Science and Technology, Israel
PAZY Foundation
Ministry of Science and Higher Education of the Russian Federation
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献