Abstract
Temperature-induced redshift of the V-O charge transfer band (CTB) is promising for designing high performance optical thermometry. The shift mechanism is considered as the thermal populations of high vibrational energy levels of the VO43− ground state. Direct experimental evidence for this, however, is still lacking. In this work, Tm3+-doped YVO4 with various doping concentrations was studied to achieve strong 1D2 emission of Tm3+. The temperature dependent CTB was studied at low temperatures to give direct evidence experimentally for the shift mechanism of the CTB using YVO4:20% Tm3+. It was found that the V-O CTB does not shift when the temperature is lower than a certain temperature (60 K), verifying the proposed shift mechanism experimentally. In addition, based on the temperature quenching of 1D2 emission of Tm3+ and the redshift of the CTB, single-excitation ratiometric thermometry was carried out using YVO4:30% Tm3+,6% Sm3+. High relative sensitivity was achieved with a maximal value reaching up to 3.86% K−1 at approximately 355 K.
Funder
National Natural Science Foundation of China
Science Foundation of Shandong Jiaotong University
Doctoral Research Start-Up Fund of Shandong Jiaotong University
Subject
Atomic and Molecular Physics, and Optics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献