Affiliation:
1. Hunan University
2. University of Cambridge
3. Central South University
Abstract
Continuous-variable quantum secret sharing (CVQSS) allows a legitimate user, i.e., the dealer, to share a string of secret keys with multiple distant users. These users cannot individually recover the dealer’s secret key unless they work cooperatively. Although the theoretical security proof of CVQSS has been well established, its practical security and implementation still face challenges. In this paper, we suggest a practical scheme for CVQSS using plug-and-play (P&P) configuration and dual-phase-modulated coherent state (DPMCS). The proposed scheme, called P&P DPM-based CVQSS, waives the necessity that each user has to prepare respective coherent states with their own lasers, thereby eliminating synchronous loopholes caused by different lasers and reducing the complexity of deployment of the user’s stations. Moreover, the local oscillator (LO) can be generated locally by the dealer so that the whole CVQSS system could be naturally immune to all LO-aimed attacks. We derive the security bounds for P&P DPM-based CVQSS by properly making most of the existing security analysis techniques of continuous-variable quantum key distribution (CVQKD). In addition, an experimental concept of P&P DPM-based CVQSS is also presented, which can be deemed a guideline for future implementation.
Funder
National Natural Science Foundation of China
National University of Defense Technology
Fundamental Research Funds for the Central Universities
Subject
Atomic and Molecular Physics, and Optics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献