Abstract
Axial light distribution modulation is widely applied in optical tweezers, hard-brittle material cutting, multilayer laser direct writing, etc. To generate arbitrary axial light distribution, the coordinate-transformation iteration (CTI) algorithm is presented. The CTI algorithm unifies equations in low and high numerical aperture (NA) scenarios, using the same iterative algorithm to produce phase computer-generated holograms. In a low NA scenario, twin-foci, flattop, and
sin
2
distributions have been achieved. In high NA scenarios, multirings, multifoci, and needle-like distributions have been realized in simulation with specific polarized incident beams. Since the CTI algorithm is inherently an efficient one-dimensional phase retrieval algorithm that is not limited by NA, this method has the potential to become a well-received solution for axial light distribution modulation.
Funder
Key Research and Development Project of Hubei Province, China
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献