Diverse lateral shifts of beams in non-Hermitian waveguide arrays

Author:

Cai Wuduo1,Liu Jianlong2ORCID,Gao Yang3,Ye Weimin1

Affiliation:

1. National University of Defense Technology

2. Harbin University of Engineering

3. Heilongjiang University

Abstract

Non-Hermitian systems have attracted considerable attention in optics due to the rich physics introduced by the existence of real spectra and exceptional points (EPs), which is exploited in lasers, optical sensors and on-chip manipulations of light. Here, focusing on the dynamics of beams in non-Hermitian waveguide arrays supporting a ring of EPs (exceptional ring) and 3rd-order EPs, we theoretically demonstrate that the center of energy of a beam prepared around an eigenstate of the waveguide array near EPs could exhibit non-zero shifts in the lateral direction during its propagation. When the initial state of the beam prepared around an eigenstate inside (outside) the exceptional ring with the imaginary (real) eigenvalue, the lateral shifts of the beams are manifested by the non-oscillating (Zitterbewegung-like) motions, which are robust to the perturbations of coupling coefficients between waveguides. Remarkably, the amplitude of the non-oscillating shift is dependent on a non-Hermitian Berry connection (U(1) gauge invariance). It contradicts the conventional wisdom that the Berry connection cannot induce the dynamic effect. Furthermore, near the high-order EPs, the initial-state-dependent lateral shifts of the beams present diversity, such as multifrequencies and destructive interferences. The counterintuitive lateral shifts of the beams stem from the non-orthogonal nature of eigenstate of the non-Hermitian systems, which may open a gateway towards the non-Hermitian beam dynamics and manipulations of beams.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3