Influence of cutting parameters on system vibration and optical performance of diamond turned optics

Author:

Zhuang Guilin,Liu HanzhongORCID,Zong Wenjun

Abstract

In this paper the influence of vibration on reflectivity is systematically analyzed. A three-dimensional topography model of a machined surface considering vibration is established first. Based on the three-dimensional morphology model, the reflectivity of a diamond turned surface is calculated by a rigorous coupled wave method. The influences of cutting parameters on the diffraction effect of a diamond turned surface are discussed. The predicted and experimental results reveal that as the vibration intensifies with an increase in cutting depth and feed rate, the peak–valley (PV) roughness of the machined surface increases, which yields an increasing diffraction effect, i.e., resulting in a decrease in reflectivity. When the spindle speed is low, the tool and workpiece have a small sliding velocity, causing a great deal of friction, which amplifies the deformation of the workpiece surface. In this case, the PV value of the machined surface roughness is large, leading to a greater diffraction effect and bad reflectivity. With the increment of spindle rotation speed, the friction is relieved quickly, but the vibration is intensified, which produces increasing reflectivity. When the spindle speed is set to about 1200r/min, the reflectivity reaches the maximum value. When the spindle speed is larger than 1200r/min, the increase of vibration is dominant, resulting in a gradual increase in PV surface roughness and a decrease in reflectivity.

Funder

Science Challenge Project

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3