Nonlinear error full-field compensation method for phase measuring profilometry

Author:

Xu Cai,Cao YipingORCID,Cai Wenjuan,Wu HaitaoORCID,Li Hongmei,Zhang Hechen,An Haihua

Abstract

Phase measuring profilometry (PMP) has the highest measuring accuracy among structured light projection-based three-dimensional (3D) sensing methods. Due to their low-cost and high-resolution features, commercial projectors are extensively used in PMP, but they are all designed with a gamma effect purpose that considers the characteristics of human vision. Affected by the gamma effect, a set of phase-shifting sinusoidal deformed patterns captured in PMP may contain high-order harmonics which lead to nonlinear phase errors. Then, a novel nonlinear error full-field compensation method is proposed. First, the unwrapped phases modulated by the reference plane are measured several times, and their average phase is taken as the measured phase modulated by the reference plane to eliminate random errors as much as possible. Second, an expected phase plane is fitted from this average phase with the least-squares method. Third, the nonlinear phase error can be detected by subtracting the fitted expected phase from this average phase. Finally, the full-field look-up table (LUT) can be established between the nonlinear phase error and the measured phase. When an object is measured, the unwrapped phase modulated by the object is taken as the measured phase of the LUT, so the corresponding nonlinear phase error can be directly searched in the LUT. In this way, the full-field nonlinear phase error can be efficiently compensated. Experimental results show the feasibility and validity of the proposed method. The mean absolute error (MAE) can be improved from 0.48 mm to 0.06 mm, and the root mean square error (RMSE) can be improved from 0.55 mm to 0.07 mm.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3