Feature matching for texture-less endoscopy images via superpixel vector field consistency

Author:

Liu Shiyuan1,Fan Jingfan1,Ai Danni1,Song Hong1,Fu Tianyu1,Wang Yongtian1,Yang Jian1

Affiliation:

1. Beijing Institute of Technology

Abstract

Feature matching is an important technology to obtain the surface morphology of soft tissues in intraoperative endoscopy images. The extraction of features from clinical endoscopy images is a difficult problem, especially for texture-less images. The reduction of surface details makes the problem more challenging. We proposed an adaptive gradient-preserving method to improve the visual feature of texture-less images. For feature matching, we first constructed a spatial motion field by using the superpixel blocks and estimated its information entropy matching with the motion consistency algorithm to obtain the initial outlier feature screening. Second, we extended the superpixel spatial motion field to the vector field and constrained it with the vector feature to optimize the confidence of the initial matching set. Evaluations were implemented on public and undisclosed datasets. Our method increased by an order of magnitude in the three feature point extraction methods than the original image. In the public dataset, the accuracy and F1-score increased to 92.6% and 91.5%. The matching score was improved by 1.92%. In the undisclosed dataset, the reconstructed surface integrity of the proposed method was improved from 30% to 85%. Furthermore, we also presented the surface reconstruction result of differently sized images to validate the robustness of our method, which showed high-quality feature matching results. Overall, the experiment results proved the effectiveness of the proposed matching method. This demonstrates its capability to extract sufficient visual feature points and generate reliable feature matches for 3D reconstruction and meaningful applications in clinical.

Funder

National Natural Science Foundation of China

Beijing Nova Program

Beijing Institute of Technology Research Fund Program for Young Scholars

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3