Noninvasive measurement of the vital signs of cancer patients with a dual-path microbend fiber sensor

Author:

Wang Ying1,You Meizheng2,Zhang Yanhong3,Wu Sumei3,Zhang Yi4,Yang Huicheng1,Zheng Ting2,Chen Xiaohui2,Chen Zhihao1ORCID,Xie Xianhe3,Zheng Xiaochun2

Affiliation:

1. Quanzhou Normal University

2. Fujian Provincial Hospital

3. Fujian Medical University

4. Xiamen University

Abstract

A novel dual-path microbend fiber optic sensor is designed for noninvasive measurement of respiratory rate (RR) and heart rate (HR) for cancer patients. The performance of the microbend fiber sensor is assessed in two groups of cancer patients, cancer patients with pain and without pain, ranging from eighteen to ninety-six years old in a daily observational measurement with the sensor mattress under the mattress of the clinical bed. All the patients received standard clinical monitoring for evaluating the accuracy of our measurement results. The results of our study showed good consistency in the experimental results of RR and HR between the dual-path fiber sensor we proposed and the hospital equipment with average errors of 3.60 beats per minute (bpm) and 1.02 respiration per minute (rpm) in HR and RR measurement in cancer patients with pain and 1.87bpm and 1.27rpm in HR and RR measurement in cancer patients without pain, respectively. In HR monitoring, the single path microbend fiber optic sensor has 8035 minutes of data with a false report rate of 19.09%, while the dual-path microbend fiber optic sensor has 6188 minutes of data with a false report rate of 12.87%. The dual-path sensor has a smaller false report rate compared with the single path sensor due to pre-judgments of data with path 1 and path 2. To our best knowledge, it is the first time to propose and demonstrate a dual-path sensor to reduce the false report rate for HR and RR measurements. The results of the Blend-Altman method showed great agreement between our sensor and hospital standard monitor in HR and RR measurements. The independent sample t-test indicates that the HR of cancer patients may be an effective way to judge whether or not they have cancer pain. Our noninvasive dual-path microbend fiber sensor also showed the advantages of an easy fabrication process, simple structure, and low false report rate.

Funder

the Innovation of Science and Technology

the Fund of University-Industry Research Project from Department of Science and Technology

Medical Innovation Project of Fujian Province

Fund of “Harbour Project” of Quanzhou

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3