Excitation and manipulation of both magnetic and electric surface plasmons

Author:

Peng Ruiguang1,Zhao Qian1ORCID,Meng Yonggang1,Wen Shizhu1

Affiliation:

1. Tsinghua University

Abstract

Surface plasmons (SPs) is the cornerstone in terahertz (THz) near-field photonics, which play crucial roles in the miniaturization and integration of functional devices. The excitation and manipulation of SPs, however, is currently restricted to electric SPs paradigm, while magnetic SPs receive less attention despite the importance of magnetic light-matter interactions. Here, a scheme is proposed to simultaneously convert the propagating waves in free space into magnetic and electric SPs using a single ultracompact device. First, a plasmonic structure composed of connected slit rings is designed and demonstrated to support both electric and magnetic SPs, which is ascribed to the two distinct eigenmodes of oscillating electrons and vortex currents, respectively. Second, with the assistance of an anisotropic and gradient metasurface, orthogonal linear polarized components of incident THz beams are coupled into different electric and magnetic SP channels with little crosstalk. Furthermore, by encoding two distinct polarization-dependent phase profile into the metasurface, it is shown that the resulting meta-device can individually tailor the wavefronts of magnetic and electric SPs, thus simultaneously engineering magnetic and electric near-field distributions. This work can pave the road to realize bi-channel and on-chip devices, and inspire more integrated functionalities especially related to near-field manipulations of magnetic SPs.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3