Fourier metasurface cloaking: unidirectional cloaking of electrically large cylinder under oblique incidence

Author:

Zhang Yi1,Fan Haiyan2,Zhang Yujie,Ran Lixin1,Ye Dexin1ORCID,Chen Xudong

Affiliation:

1. Zhejiang University

2. The Hong Kong Polytechnic University

Abstract

The existence of a non-electrically-small scatterer adjacent to the source can severely distort the radiation and lead to a poor electromagnetic compatibility. In this work, we use a conducting hollow cylinder to shield a cylindrical scatterer. The cylinder is shelled with a single dielectric layer enclosed by an electromagnetic metasurface. The relationship between the scattering field and the surface impedance is derived analytically. By optimizing the Fourier expansion coefficients of the surface impedance distribution along ϕ-dimension, the scattering cross-section can be effectively reduced. This unidirectional cloaking method is valid for both TM/TE and non-TM/TE incident field and is not limited to a plane-wave incident field. The accuracy and effectiveness of the method are verified by four cloaking scenarios in microwave regime. We demonstrate that with the surface impedance obtained by the proposed method, a metasurface is designed with physical subwavelength structures. We also show a cloaking scenario under a magnetic dipole radiation, which is closer to the case of a realistic antenna. This method can be further applied to cloaking tasks in terahertz and optical regimes.

Funder

China Scholarship Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3