Real-time data processing in colorimetry camera-based single-molecule localization microscopy via CPU-GPU-FPGA heterogeneous computation

Author:

Lin Jiaxun,Wang Kun,Huang Zhen-LiORCID

Abstract

Because conventional low-light cameras used in single-molecule localization microscopy (SMLM) do not have the ability to distinguish colors, it is often necessary to employ a dedicated optical system and/or a complicated image analysis procedure to realize multi-color SMLM. Recently, researchers explored the potential of a new kind of low-light camera called colorimetry camera as an alternative detector in multi-color SMLM, and achieved two-color SMLM under a simple optical system, with a comparable cross-talk to the best reported values. However, extracting images from all color channels is a necessary but lengthy process in colorimetry camera-based SMLM (called CC-STORM), because this process requires the sequential traversal of a massive number of pixels. By taking advantage of the parallelism and pipeline characteristics of FPGA, in this paper, we report an updated multi-color SMLM method called HCC-STORM, which integrated the data processing tasks in CC-STORM into a home-built CPU-GPU-FPGA heterogeneous computing platform. We show that, without scarifying the original performance of CC-STORM, the execution speed of HCC-STORM was increased by approximately three times. Actually, in HCC-STORM, the total data processing time for each raw image with 1024 × 1024 pixels was 26.9 ms. This improvement enabled real-time data processing for a field of view of 1024 × 1024 pixels and an exposure time of 30 ms (a typical exposure time in CC-STORM). Furthermore, to reduce the difficulty of deploying algorithms into the heterogeneous computing platform, we also report the necessary interfaces for four commonly used high-level programming languages, including C/C++, Python, Java, and Matlab. This study not only pushes forward the mature of CC-STORM, but also presents a powerful computing platform for tasks with heavy computation load.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Innovational Fund for Scientific and Technological Personnel of Hainan Province

Matching Fund from Collaborative Innovation Center of One Health, Hainan University

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3