Contributions to the optical linewidth of shallow donor-bound excitonic transition in ZnO

Author:

Niaouris VasileiosORCID,D’Ambrosia Samuel H.,Zimmermann Christian,Wang Xingyi1,Hansen Ethan R.,Titze Michael2ORCID,Bielejec Edward S.2,Fu Kai-Mei C.13ORCID

Affiliation:

1. University of Washington

2. Sandia National Laboratories

3. Pacific Northwest National Laboratory

Abstract

Neutral shallow donors in zinc oxide (ZnO) are spin qubits with optical access via the donor-bound exciton. This spin–photon interface enables applications in quantum networking, memories, and transduction. Essential optical parameters which impact the spin–photon interface include radiative lifetime, optical inhomogeneous and homogeneous linewidth, and optical depth. We study the donor-bound exciton optical linewidth properties of Al, Ga, and In donors in single-crystal ZnO. The ensemble photoluminescence linewidth ranges from 4 to 11 GHz, less than two orders of magnitude larger than the expected lifetime-limited linewidth. The ensemble linewidth remains narrow in absorption through samples with an estimated optical depth up to several hundred. The primary thermal relaxation mechanism is identified and found to have a negligible contribution to the total linewidth at 2 K. We find that inhomogeneous broadening due to the disordered isotopic environment in natural ZnO is significant, contributing 2 GHz. Two-laser spectral hole burning measurements indicate that the dominant mechanism, however, is homogeneous. Despite this broadening, the high homogeneity, large optical depth, and potential for isotope purification indicate that the optical properties of the ZnO donor-bound exciton are promising for a wide range of quantum technologies, and motivate a need to improve the isotope and chemical purity of ZnO for quantum technologies.

Funder

U.S. Department of Energy

National Science Foundation

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3