Eavesdropper localization for quantum and classical channels via nonlinear scattering

Author:

Popp Alexandra12,Sedlmeir Florian13,Stiller Birgit12ORCID,Marquardt Christoph12

Affiliation:

1. Friedrich-Alexander-Universität Erlangen-Nürnberg

2. Graduate School in Advanced Optical Technologies

3. University of Otago

Abstract

Optical fiber networks are part of the important critical infrastructure and known to be prone to eavesdropping attacks. Hence, cryptographic methods have to be used to protect communication. Quantum key distribution (QKD), at its core, offers information theoretical security based on the laws of physics. In deployments, one has to take into account practical security and resilience. The latter includes the localization of a possible eavesdropper after an anomaly has been detected by the QKD system to avoid denial-of-service. Here, we present an approach to eavesdropper location that can be employed in quantum as well as classical channels using stimulated Brillouin scattering. The tight localization of the acoustic wave inside the fiber channel using correlated pump and probe waves allows discovery of the coordinates of a potential threat within centimeters. We demonstrate that our approach outperforms conventional optical time-domain reflectometry (OTDR) in the task of localizing an evanescent outcoupling of 1% with centimeter precision inside standard optical fibers. The system is furthermore able to clearly distinguish commercially available standard SMF28 from different manufacturers, paving the way for fingerprinted fibers in high-security environments.

Funder

Bundesministerium für Bildung und Forschung

Max-Planck-Gesellschaft

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3