Security-aware 5G RAN slice mapping with tiered isolation in physical-layer secured metro-aggregation elastic optical networks using heuristic-assisted DRL

Author:

Wang Yunwu1ORCID,Zhu Min1ORCID,Gu Jiahua1ORCID,Liu Xiang1,Tong Weidong1,Hua Bingchang1,Lei Mingzheng1ORCID,Cai Yuancheng1ORCID,Zhang Jiao1ORCID

Affiliation:

1. Purple Mountain Laboratories

Abstract

The optical transport network (OTN) encryption technology is attractive to solve the physical-layer security in services for the light-path provision process. This paper mainly explores the security-aware 5G radio access network (RAN) slice mapping problem with the tiered isolation (TI) policy, which decides the solution for aggregating service into the physical-layer secured metro-aggregation elastic optical networks (MA-EONs). We first introduce the physical-layer secured OTNs and illustrate their differences from the traditional optical networks. Then, we formulate the 5G RAN slice mapping problem in physical-layer secured MA-EONs as an exact integer linear programming (ILP) model to minimize the average cost (AC), which consists of the number of utilized processing pools (PPs)/general-purpose processors (GPPs)/virtual machines (VMs), and maximum frequency slot index (MFSI) on the light-paths, meanwhile satisfying the given slice’s latency, isolation, and security requirements. After that, to overcome the non-scalability problem of the ILP model, a heuristic-assisted deep reinforcement learning (HA-DRL) algorithm is proposed to obtain a near-optimal solution for large-scale network scenarios, where the classical shortest path algorithm is employed in the DRL to shrink the size of the exploration space and accelerate the convergence process. Finally, we evaluate the proposed ILP model and HA-DRL algorithm through extensive simulations. Simulation results indicate that our proposed HA-DRL method can find approximate solutions to the ILP model in the small-scale network scenario. Furthermore, the HA-DRL method can also achieve higher resource efficiency compared with benchmark heuristic first-fit algorithms in the large-scale network scenario. In comparison to the first-fit algorithm benchmark, the proposed HA-DRL can achieve up to 9.4% AC reduction in large-scale network scenarios.

Funder

National Natural Science Foundation of China

Jiangsu Provincial Key Research and Development Program

Peng Cheng Laboratory

China Postdoctoral Science Foundation

Graduate Research and Innovation Projects of Jiangsu Province

Publisher

Optica Publishing Group

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3