Gravity-based network traffic abstraction and laser ON/OFF control in optical satellite networks

Author:

Wang WeiORCID,Zhang Yuanjian,Zhao YongliORCID,Gao Kexin,Hu Liyazhou1ORCID,Zhang Jie

Affiliation:

1. Macau University of Science and Technology

Abstract

As the cost of launching low Earth orbit satellites continuously decreases, satellite-based communications networks are emerging as a new area for both academia and industry. Lasers are already employed for building inter-satellite links, forming optical satellite networks. The orbiting nature of satellites determines that the optical satellite networks are usually uniformly distributed around the Earth, to provide seamless coverage to any place at all times. However, the end users on the Earth are non-uniformly distributed. As a result, many satellites with laser links might not be utilized efficiently. From the energy perspective, this work studies the energy-efficiency issues of the inter-satellite laser links. We first model the optical satellite networks by presenting the satellite constellation with inter-satellite laser design principles and introduce the laser ON/OFF control problem accordingly. To explore the possibility of saving energy in the massive satellite deployment, we further introduce the gravity-based network traffic model and propose a gravity-based network traffic abstraction (GNTA) model to evaluate the importance of each laser link. Accordingly, we further propose a GNTA-based ON/OFF control (GOOC) algorithm to improve the energy efficiency of inter-satellite laser links by switching OFF parts of the laser links that are less utilized. We evaluate the GOOC’s performance using simulation, and results show that switching OFF 20% of the laser terminals in the full-gridmesh topology can improve the energy efficiency by about 10%, with an acceptable cost of network performance degradation.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Computer Networks and Communications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3