Affiliation:
1. Doheny Eye Institute
2. University of California - Los Angeles
3. Tianjin Chengjian University
Abstract
To assess the performance of adaptive optics and predict an optimal wavefront correction, we built a wavefront reconstructor with a damped transpose matrix of the influence function. Using an integral control strategy, we tested this reconstructor with four deformable mirrors in an experimental system, an adaptive optics scanning laser ophthalmoscope, and an adaptive optics near-confocal ophthalmoscope. Testing results proved that this reconstructor could ensure a stable and precise correction for wavefront aberration compared to a conventional optimal reconstructor formed by the inverse matrix of the influence function. This method may provide a helpful tool for testing, evaluating, and optimizing adaptive optics systems.
Funder
Research to Prevent Blindness/Dr. H. James and Carole Free Catalyst Award for Innovative Research Approaches for AMD
National Eye Institute
W. M. Keck Foundation
Carl Marshall and Mildred Almen Reeves Foundation
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献