Near-field directionality governed by asymmetric dipole–matter interactions

Author:

Zhong Yuhan,Wang Chan1,Bian Chenxu,Chen Xuhuinan,Chen Jialin,Zhu Xingjian,Hu Hao2ORCID,Low Tony3,Chen Hongsheng1,Zhang Baile4,Lin XiaoORCID

Affiliation:

1. Jinhua Institute of Zhejiang University, Zhejiang University

2. Nanjing University of Aeronautics and Astronautics

3. University of Minnesota

4. Nanyang Technological University

Abstract

Directionally molding the near-field and far-field radiation lies at the heart of nanophotonics and is crucial for applications such as on-chip information processing and chiral quantum networks. The most fundamental model for radiating structures is a dipolar source located inside homogeneous matter. However, the influence of matter on the directionality of dipolar radiation is oftentimes overlooked, especially for the near-field radiation. As background, the dipole–matter interaction is intrinsically asymmetric and does not fulfill the duality principle, originating from the inherent asymmetry of Maxwell’s equations, i.e., electric charge and current density are ubiquitous but their magnetic counterparts are non-existent to elusive. We find that the asymmetric dipole–matter interaction could offer an enticing route to reshape the directionality of not only the near-field radiation but also the far-field radiation. As an example, both the near-field and far-field radiation directionality of the Huygens dipole (located close to a dielectric–metal interface) would be reversed if the dipolar position is changed from the dielectric region to the metal region.

Funder

Key Research and Development Program of Zhejiang Province

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Zhejiang Province

Excellent Young Scientists Fund

National Natural Science Foundation of China

Singapore Ministry of Education Academic Research Fund Tier 2

Singapore Ministry of Education Academic Research Fund Tier 3

National Research Foundation Singapore Competitive Research Program

Key Research and Development Program of the Ministry of Science and Technology

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3