Affiliation:
1. National University of Defense Technology
Abstract
Electrical crosstalk severely degrades the performance of Mach-Zehnder modulator (MZM) array. However, conventional crosstalk suppression techniques incur losses of large amounts of chip area for signal isolation, which becomes a bottleneck of high-density electronic-photonic integrated circuit. In this paper, the electrical crosstalk of Traveling-Wave MZM array is originally analyzed with static and dynamic combined crosstalk coefficients. Circuit-level suppression techniques of differential dual-drive electrode schemes with tightly coupled electrode pairs and a virtual ground structure with full-matching termination circuit are investigated for noise-removing effects. Simulation results show that the dynamic electrical crosstalk coefficient between two adjacent modulators is reduced to below 1.5%, which is five times lower than the baseline. The electro-optical link measurements show that the BER is significantly reduced from 1E-3 to 1E-12 for multi-channel operation, which confirms the effectiveness of the crosstalk suppression techniques.
Funder
National Key Research and Development Program of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献