Key technology of vector removal decoupling in a slope-based figuring model and application in continuous phase plate fabrication

Author:

Gao QingORCID,Wang Shanshan,Zhang Nansheng,Shi Feng1,Qiao Shuo1,Hao Qun2

Affiliation:

1. National University of Defense Technology

2. Changchun University of Science and Technology

Abstract

For the high-precision fabrication of a continuous phase plate (CPP), a combined decoupling algorithm of single-step decoupling based on the Clairaut–Schwarz theorem and global decoupling by stagewise iteration is proposed. It attempts to address the problem of the low accuracy and limitation of the existing slope-based figuring (SF) model in two-dimensional applications caused by the vector removal coupling between the tool slope influence function and the material removal slope due to the inherent convolution effect in the SF model. The shortcomings of CPP interferometry and the application bottleneck of the Hartmann test in traditional height-based figuring model are studied. The generation mechanism of vector removal coupling is analyzed and compensated. A CPP of 85mm×85mm was successfully machined by the decoupled slope-based figuring model, and the root mean square (RMS) of the surface height error accounted for 6.01% of the RMS of the design value. The research results can effectively improve the convergence and certainty of CPP fabrication using the slope-based figuring model.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3