Affiliation:
1. University of Chinese Academy of Sciences
Abstract
In this Letter, we present a learning-based method for efficient Fourier single-pixel imaging (FSI). Based on the auto-encoder, the proposed adaptive under-sampling technique (AuSamNet) manages to optimize a sampling mask and a deep neural network at the same time to achieve both under-sampling of the object image’s Fourier spectrum and high-quality reconstruction from the under-sampled measurements. It is thus helpful in determining the best encoding and decoding scheme for FSI. Simulation and experiments demonstrate that AuSamNet can reconstruct high-quality natural color images even when the sampling ratio is as low as 7.5%. The proposed adaptive under-sampling strategy can be used for other computational imaging modalities, such as tomography and ptychography. We have released our source code.
Funder
Program of Shanghai Academic Research Leader
National Natural Science Foundation of China
Chinesisch-Deutsche Zentrum für Wissenschaftsförderung
Subject
Atomic and Molecular Physics, and Optics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献