All-fiber SPR microfluidic chip for GDF11 detection

Author:

Wei Yong1,Ren Zhuo1,Ran Ze1,Wang Rui1,Liu Chun-Biao1,Shi Chen1,Liu Chun-Lan1,Wang Chen2,Zhang Yong-Hui2

Affiliation:

1. Chongqing Three Gorges University

2. Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area

Abstract

In order to perform microfluidic detection of cytokines with low concentration, such as growth differentiation factor 11 (GDF11), the most common method is to construct microfluidic channels and integrate them with SPR sensing units. In this paper, we proposed a novel all-fiber SPR microfluidic chip for GDF11 detection. The method was to construct the SPR sensing area on a designed D-shaped multimode fiber, which was nested inside a quartz tube to form a semi-cylindrical microfluidic channel. The surface of the SPR sensing area experienced sensitization and specifically modification to achieve the specific detection of GDF11. When the sensitivity of detection was 1.38 nm/lg(g/mL) and the limit of detection was 0.52 pg/mL, the sample consumption was only 0.4 µL for a single detection. The novel all-fiber SPR microfluidic detection chip has the advantages of flexible design, compact structure and low sample consumption, which is expected to be used in wearable biosensing devices for real-time online monitoring of trace cytokines in vivo.

Funder

National Natural Science Foundation of China

Chongqing Natural Science Foundation

the Science and Technology Project Affiliated to the Education Department of Chongqing Municipality

Chongqing Postgraduate Research and Innovation Project

Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-Warning in Three Gorges Reservoir Area

Fundamental Research Funds for Chongqing Three Gorges University of China

Open Project Program of Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3