Polarization-universal bandgaps realized with chiral sculptured thin films

Author:

Fiallo Ricardo A.,Horn Mark W.,Lakhtakia AkhleshORCID

Abstract

Two thin-film structures comprising chiral sculptured thin films (CSTFs) were fabricated to exploit the circular Bragg phenomenon (CBP) exhibited by CSTFs for realizing polarization-universal bandgaps. In a matched ambidextrous bilayer (MAB), a CSTF overlays its enantiomer, both identical except in structural handedness. A tightly interlaced MAB (TIMAB) comprises multiple bilayers, each bilayer containing a one-period-thick CSTF and its enantiomer of the same thickness. Optical transmission measurements for obliquely incident light in the visible spectrum showed that both MABs and TIMABs can exhibit polarization-universal bandgaps with maximum transmittance of less than 20%. The center wavelengths of these bandgaps are in the proximity of the center wavelength of the CBP exhibited by the constituent CSTFs, but the bandgaps are considerably narrower than the CBP spectral regime. The bandwidth variation of the polarization-universal bandgap of the TIMAB is considerably less than that of the MAB. These bandgaps can be tuned by adjusting the angle of incidence.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Geometric phase and photonic spin Hall effect in thin films with architected columnar morphology;Journal of the Optical Society of America B;2023-08-22

2. On temporally periodic physical vapor deposition on random rough surfaces;Journal of Nanophotonics;2023-07-21

3. Alteration of optical Bragg phenomenon by substrate roughness;Surface Engineering and Forensics;2023-04-25

4. Architecting the columnar morphology of sculptured thin films for polarization-universal bandgaps;International Workshop on Thin Films for Electronics, Electro-Optics, Energy and Sensors 2022;2023-02-01

5. Polarization-universal bandgaps realized with columnar thin films;Journal of Nanophotonics;2022-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3