Noise analysis of optoelectronic oscillators in the presence of the relative intensity noise of the laser

Author:

Jahanbakht SajadORCID

Abstract

Optoelectronic oscillators (OEOs) have recently been considered very good candidates for producing ultra-low phase noise radio frequency (RF) oscillations. One of the most important noise sources of any OEO is the relative intensity noise (RIN) of the optical field in the optical part of this system. It is the dominant noise source in some OEO cases. The initial source of the RIN is the laser; however, it may be largely enhanced in the fiber by some phenomena such as the guided entropy mode Rayleigh scattering. Here a frequency domain analysis approach is introduced to separately analyze the effect of both the low-frequency RIN (LFRIN) and the high-frequency RIN (HFRIN), i.e., the RIN around the RF harmonics, on both the phase and amplitude noises of the delay-based single-loop/dual-loop OEOs. The presented approach can take into account the RIN at both the input and the output of the optical fibers. The measured or analytical nonlinear gain function of the photodetector and the RF amplifier can be taken into account to accurately characterize the important effect of the amplitude noise to phase noise (AN-PN) conversion. It is shown that the AN-PN conversion can largely enhance the LFRIN-induced phase noise. Also, to a much lesser degree, it can enhance the HFRIN-induced phase noise. Furthermore, it is shown that the AN-PN conversion reduces the HFRIN- and LFRIN-induced amplitude noise. It is also shown that the fibers’ dispersion has a small effect on the phase/amplitude noise power induced by either LFRIN or the HFRIN, especially for smaller fiber lengths. The validity of the new analysis approach is verified by comparing its results with those of the previously published works in the literature.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3