Generating high-energy densities by sidelobe suppression in the far-field of phase-locked lasers

Author:

Dev Vasu1,Reddy Andra Naresh Kumar23ORCID,Pal Vishwa1

Affiliation:

1. Indian Institute of Technology Ropar

2. HEE Photonic Labs

3. University of Latvia

Abstract

Laser beams with high-energy densities are desired for both fundamental research and applied applications. We present a numerical study on the generation of high-energy densities by sidelobe suppression in the far-field intensity distribution of phase-locked lasers. The method relies on modifying the combined field distribution of phase-locked lasers to obtain uniform amplitude and phase distributions in a near-field plane, which enables the formation of a high-energy density main central lobe (zeroth order) in the far field. The method is applied to various one-dimensional (1D) and two-dimensional (2D) array geometries, such as square, triangular, Kagome, random, and 1D ring. The results show that for in-phase-locked lasers in 2D array geometries, the diffraction efficiency of the high-energy density region (zeroth-order lobe) can be increased in the range of 90%–95%. For in-phase-locked lasers in a 1D ring array, the maximum diffraction is found to be 75 % . Further, the effects of the range of phase locking, system size, as well as topological defects are examined on diffraction efficiency. The method is also applied to an out-of-phase-locked laser in the square array, and a high-energy density output beam is obtained.

Funder

Science and Engineering Research Board

Indian Institute of Technology Ropar

State Education Development Agency Republic of Latvia

European Regional Development Fund

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced output power-density by sidelobe suppression of phase-locked lasers;Frontiers in Optics + Laser Science 2022 (FIO, LS);2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3