Optical constants of germanium antimony telluride (GST) in amorphous, crystalline, and intermediate states

Author:

Frantz Jesse A.1ORCID,Myers Jason D.1,Clabeau Anthony2,Bekele Robel Y.1,Hong Nina3,Vincenti Maria A.4ORCID,Gandolfi Marco456ORCID,Sanghera Jasbinder S.1

Affiliation:

1. U.S. Naval Research Laboratory

2. University Research Foundation

3. J.A. Woollam Co., Inc.

4. University of Brescia

5. Istituto Nazionale di Ottica - Consiglio Nazionale delle Ricerche

6. Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT)

Abstract

The optical constants of germanium antimony telluride (GST), measured by spectroscopic ellipsometry (SE), for the spectral range of 350-30,000 nm are presented. Thin films of GST with composition Ge2Sb2Te5 are prepared by sputtering. As-deposited samples are amorphous, and when heated above the phase transition temperature near 150 °C, films undergo an amorphous to face-centered cubic crystalline phase transition. The optical constants and thicknesses of amorphous and crystalline GST films are determined from multi-angle SE measurements, applying a general oscillator model in both cases. Then, in order to evaluate the optical constants at intermediate states throughout the phase transition, GST films are heated in situ on a temperature stage, and single-angle SE measurements are carried out at discrete temperature steps in a range from 120–158 °C. It is shown that ellipsometric data for partially crystallized states can be fit by treating the GST as an effective medium consisting of its amorphous and crystalline states. Its optical constants, fractional crystallinity, and thickness can be determined at intermediate crystallization states throughout the phase transition. As a practical demonstration of the usefulness of this method, samples are held at fixed temperatures near the transition temperature, and SE is performed periodically. The fraction of crystallinity is determined as a function of time, and an activation energy for the amorphous to crystalline phase transition is determined.

Publisher

Optica Publishing Group

Subject

Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3