Affiliation:
1. University of Chinese Academy of Sciences
Abstract
Mid-infrared fiber combiners have great potential in power and spectral combination. However, studies on mid-infrared transmission optical field distributions using these combiners are limited. In this study, we designed and fabricated a 7 × 1 multimode fiber combiner based on sulfur-based glass fibers and observed approximately 80% per-port transmission efficiency at 4.778 µm wavelength. We investigated the propagation properties of the prepared combiners and explored the effects of transmission wavelength, output fiber length, and fusion deviation on the transmitted optical field and beam quality factor M2. Additionally, we assessed the effect of coupling on the excitation mode and spectral combination of the mid-infrared fiber combiner for multiple light sources. Our results provide an in-depth understanding of the propagation properties of the mid-infrared multimode fiber combiners, which may find applications in high-beam-quality laser devices.
Funder
National Natural Science Foundation of China
Youth Innovation Promotion Association of the Chinese Academy of Sciences
Key Research and Development Projects of Shaanxi Province
Open Research Fund for development of high-end scientific instruments and core components of the Center for Shared Technologies and Facilities, XIOPM, CAS.
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献