Mechanism of paint removal by nanosecond pulsed laser plasma shock: simulation and experiment

Author:

Li Yahui1,Li Jingyi1,Dong Hang1,Zhang Wei1,Jin Guangyong12ORCID

Affiliation:

1. Changchun University of Science and Technology

2. Changchun University of Technology

Abstract

This paper establishes a new theoretical paint removal model of plasma shock based on Fabbro’s model and Newton’s second law. A two-dimensional axisymmetric finite element model is established to calculate the theoretical model. By comparing the theoretical and experimental results, it is found that the theoretical model can accurately predict the threshold of laser paint removal. It is indicated that plasma shock is an essential mechanism in laser paint removal. The threshold for laser paint removal is approximately 1.73J/cm2. The experiments show that, with the increase of the laser fluence, the effect of laser paint removal first increases and then decreases. With the increase of the laser fluence, the paint removal effect is improved due to the increase of the paint removal mechanism. The competition between the plastic fracture and pyrolysis leads to a reduction in paint effectiveness. In summary, this study can provide a theoretical reference for studying the paint removal mechanism of plasma shock.

Funder

National Natural Science Foundation of China

Changchun Science and Technology Planning Project

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3