Measurement technology based on a Stokes parametric polarization system

Author:

Zhu ZhenminORCID,Qiu Hongwei,Long Wenqing1,He Lifa1,Xie Dongdong2,Ye Yinsong

Affiliation:

1. Longnan Junya Electronic Technology Co., Ltd.

2. Shandong Hi-Speed Group Co., Ltd.

Abstract

Structured light measurement systems often use polarization filters to reduce image interference from highly reflective areas. This method can be effective, but it may also reduce the brightness of specific areas, particularly overly dark portions, which can affect the accuracy of the measurement results. This paper proposes a measurement method for a polarization system based on Stokes parameters to solve the problem. After adjusting the polarization filter to angles of 0°, 45°, and 90°, the camera captures an image of the object and calculates the corresponding Stokes parameters to generate the expected polarization angle histogram. Then, based on the detailed information on the angle distribution, the accurate mathematical model is used to screen the interval, and the optimal polarization angle is determined by orthogonal processing while ensuring the signal-to-noise ratio and image quality. Finally, an image fusion technology synthesizes a set of fringe projection images with the preferred polarization angles. Experiments have shown that this new method effectively addresses the issue of interference in the highlighted region when using conventional polarization filters. Additionally, it significantly improves the quality of the fringe pattern. The polarization angle selection in the experimental process is made more rapid and accurate through the quantitative mathematical model calculation of the polarization angle, significantly improving the system’s measurement efficiency.

Funder

Jiangxi Province 03 Special Project

Jiangxi Province Key R&D Program

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3