Affiliation:
1. Ostbayerische Technische Hochschule Regensburg
Abstract
The third-order nonlinear susceptibility of silica glass is measured via self-phase modulation in standard single mode fibers at a wavelength of 1550 nm. To minimize the influence of polarization state changes along the propagation only meter-long fibers were investigated. With pulse durations of picoseconds a quasi-instantaneous nonlinearity with ultrafast electronic and fast nuclear-vibration contributions produces under conditions of negligible dispersion a classic and clean nonlinear phase shift following exactly the shape of the pulse power. The complex pulse envelope was retrieved from frequency optical gating spectrograms. The nonlinear fiber parameter γ could be determined with an accuracy of 3.7 percent. Considering the mode field structure and the doping influence the nonlinear refractive index of silica glass as the fiber base material was found to be n2=2.22⋅10−16cm2W±6.0% for picosecond-long pulses. Comparing nonlinear phase shifts from linear and circular polarized light a nuclear-vibration contribution to the cubic fiber nonlinearity of 25 percent was estimated.
Funder
Bayerisches Staatsministerium für Wissenschaft und Kunst; Bayerische Forschungsallianz
Subject
Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献