Versatile platform for electrically reconfigurable THz devices based on silicon Schottky-metasurfaces

Author:

Ahadi Saeedeh,Neshat Mohammad1ORCID,Moravvej-Farshi Mohammad KazemORCID

Affiliation:

1. University of Tehran

Abstract

We propose a versatile platform to design tunable metasurface devices based on Au/n-Si Schottky diodes embedded in a split-ring resonator (SRR) devised on a Si-on-insulator (SOI) wafer. The horizontally formed diodes are connected in the SRR radial direction, reducing the overall junction capacitance of the metasurface array compared to its counterparts with vertically formed Schottky junctions. This reduction in the junction capacitance has an essential role in the switching speed of the metasurface between the On and Off states. By carefully varying the externally applied bias voltage to the Schottky diodes, one can manipulate the incident THz signal at the metasurface resonance frequencies by converting its resonance mode by switching states. We use the forenamed platform to design three fundamental THz devices: a modulator, a polarization switch, and a polarizing beam splitter. A reverse bias of V R =5V excites two LC resonances at 0.3 THz and 0.89 THz in the modulator, which fade away by switching the gate voltage to V F =0.49V, exciting a dipole resonance in the metasurface at 0.75 THz. The numerical results show that this THz modulator enjoys modulation depths of ≥92% at the LC resonances and a phase modulation of ∼1.16rad at 0.86 THz. An identical electric bias change of the Schottky diodes in the polarization switch alters the resonators from anisotropic to isotropic, changing the output wave polarization from circular with nearly 99% of the circular polarization percentage to linear or quasi-linear at four frequencies simultaneously. Additionally, the proposed THz polarization splitter can deflect the cross-polarized transmitted component from the normally outgoing co-polarized one with an angle of 70° at 0.56 THz. The splitting ratio is switched from 1:1 in reverse bias to 14:1 in forward bias by changing the bias to forward bias. We expect that the proposed designs in the THz frequency domain, benefiting from the several hundred GHz switching speed of the Schottky diodes array, will be beneficial in applications such as analysis of the complex organic structures or polarization modulation and polarization-dependent multiplexing/demultiplexing in wireless communication systems.

Funder

Tarbiat Modares University

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3