Experimental neodymium-doped microlaser with theoretical analysis of the thermo-optic effect

Author:

Fan Huibo1,Chen Xinrui1,Fan Huili2,Wang Arui1,Chang Ruijuan1

Affiliation:

1. Yangzhou University

2. China Ship Development and Design Center

Abstract

Ultralow-threshold laser emission from a neodymium-doped silica toroidal microcavity is theoretically analyzed and experimentally demonstrated, along with the detailed analysis and compensation of the thermo-optic effect in this microlaser system. The threshold power and slope efficiency of microlaser emission are derived based on coupled-mode theory and analytic formulas, associated with the demonstration of their dependence on neodymium ion concentration and the quality factor of the microtoroid. In the experiment, a single-mode laser and multi-mode laser with threshold power as low as 1.6 µW at the wavelength of 1064 nm band are obtained via changing the coupling condition of the cavity-tapered fiber system, resonant pump wavelength, and pump power, respectively. The single-mode laser emission at the 910 nm band is also realized with the threshold power of about 108.5 µW. Furthermore, considering the potential application, non-resonant pumping for the laser emission at the 1064 nm band is characterized with threshold power of 137 µW due to the influence of the thermo-optic effect and low slope efficiency of non-resonant pumping. By coating UV-glue with a negative thermo-optic coefficient on the microtoroid surface, the compensation of the thermo-optic effect of the microtoroid is analyzed theoretically, which on the other hand can also be used for the potential application of high-sensitivity temperature sensing with sensitivity of −0.138nm/C.

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3