Measurement of visibility and phase steps of a static wind imaging interferometer assisted by deep learning

Author:

Wang Yanqiang12,Zhang Chunmin12,Chen Zeyu12,Sun Yongqiang12,Zhang Pengju12

Affiliation:

1. Xi’an Jiaotong University

2. Ministry of Education

Abstract

In a static wind imaging Michelson interferometer we developed, one of the Michelson mirrors is divided into four quadrants, with coatings on the quadrants that provide small phase steps from one quadrant to another, realizing the four simultaneous sampling of the interferogram. Restricted by the coating process and interferometer adjustment, the instrument visibility and phase steps of the four quadrants will deviate from the design value. In the actual passive detection of the atmospheric wind field, quasi-real-time calibration is required, and the calibration will also be affected by the instrument noise. In this paper, we propose a deep-learning-based denoising algorithm that can quickly denoise the wind interferogram with no need to adjust parameters, combined with conventional least-squares fitting cosine curves to obtain the visibility and phase steps of four quadrants from a series of interferograms with varying phase differences. The proposed algorithm framework is verified by experiment, and the measurement of visibility and phase steps of the wind field interferogram is efficiently realized. It can provide a reference for the visibility and phase steps measurement of the wind imaging interferometer and may have applications in wind imaging interferometer calibration.

Funder

Major International (Regional) Joint Research Project of National Natural Science Foundation of China

Key Program of National Natural Science Foundation of China

National High-tech Research and Development Program

General Program of National Natural Science Foundation of China

National Natural Science Foundation of China

Shaanxi Province Key Research and Development Program of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3