Affiliation:
1. University of Southern California
2. King Saud University
3. Tel Aviv University
4. NTT Corporation
Abstract
Structured electromagnetic (EM) waves have been explored in various frequency regimes to enhance the capacity of communication systems by multiplexing multiple co-propagating beams with mutually orthogonal spatial modal structures (i.e., mode-division multiplexing). Such structured EM waves include beams carrying orbital angular momentum (OAM). An area of increased recent interest is the use of terahertz (THz) beams for free-space communications, which tends to have: (a) larger bandwidth and lower beam divergence than millimeter-waves, and (b) lower interaction with matter conditions than optical waves. Here, we explore the multiplexing of THz OAM beams for high-capacity communications. Specifically, we experimentally demonstrate communication systems with two multiplexed THz OAM beams at a carrier frequency of 0.3 THz. We achieve a 60-Gbit/s quadrature-phase-shift-keying (QPSK) and a 24-Gbit/s 16 quadrature amplitude modulation (16-QAM) data transmission with bit-error rates below 3.8 × 10−3. In addition, to show the compatibility of different multiplexing approaches (e.g., polarization-, frequency-, and mode-division multiplexing), we demonstrate an 80-Gbit/s QPSK THz communication link by multiplexing 8 data channels at 2 polarizations, 2 frequencies, and 2 OAM modes.
Funder
Office of Naval Research
Defense Security Cooperation Agency
Defense University Research Instrumentation Program
Air Force Office of Scientific Research
Airbus Institute for Engineering Research
Qualcomm Innovation Fellowship
Subject
Atomic and Molecular Physics, and Optics
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献