ADS-Net: attention-awareness and deep supervision based network for automatic detection of retinopathy of prematurity

Author:

Peng Yuanyuan1ORCID,Chen Zhongyue1,Zhu Weifang1ORCID,Shi Fei1,Wang Meng2ORCID,Zhou Yi1ORCID,Xiang Daoman3,Chen Xinjian1,Chen Feng3

Affiliation:

1. Soochow University

2. Institute of High Performance Computing

3. Guangzhou Women and Children’s Medical Center

Abstract

Retinopathy of prematurity (ROP) is a proliferative vascular disease, which is one of the most dangerous and severe ocular complications in premature infants. Automatic ROP detection system can assist ophthalmologists in the diagnosis of ROP, which is safe, objective, and cost-effective. Unfortunately, due to the large local redundancy and the complex global dependencies in medical image processing, it is challenging to learn the discriminative representation from ROP-related fundus images. To bridge this gap, a novel attention-awareness and deep supervision based network (ADS-Net) is proposed to detect the existence of ROP (Normal or ROP) and 3-level ROP grading (Mild, Moderate, or Severe). First, to balance the problems of large local redundancy and complex global dependencies in images, we design a multi-semantic feature aggregation (MsFA) module based on self-attention mechanism to take full advantage of convolution and self-attention, generating attention-aware expressive features. Then, to solve the challenge of difficult training of deep model and further improve ROP detection performance, we propose an optimization strategy with deeply supervised loss. Finally, the proposed ADS-Net is evaluated on ROP screening and grading tasks with per-image and per-examination strategies, respectively. In terms of per-image classification pattern, the proposed ADS-Net achieves 0.9552 and 0.9037 for Kappa index in ROP screening and grading, respectively. Experimental results demonstrate that the proposed ADS-Net generally outperforms other state-of-the-art classification networks, showing the effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3