Affiliation:
1. Hebei University of Science and Technology
Abstract
We propose, to the best of our knowledge, a novel kind of tunable liquid crystal core refractive index (RI) sensor based on photonic crystal fiber (PCF) covered with a nanoring gold film. The finite element method is used to discuss and analyze the sensing performance of the RI sensor. Gold is used as the excitation material for surface plasmon resonance, and a gold nanoring is embedded around the first cladding of the PCF. The liquid analytes penetrate the outermost layer of the cladding, and the central hole is filled with liquid crystal E7. Complete coupling and incomplete coupling are excited as the analyte RI increases, and the resonance strength of complete coupling is stronger than that of incomplete coupling. It can be proved by calculation that at different wavelengths, resonant coupling of fifth-order and sixth-order surface plasmon polaritons is obtained. The RI of liquid analytes ranges from 1.405 to 1.445. The diameters of the liquid crystal cores are 0.2, 0.4, 0.6, and 0.8 µm; their average sensitivities are 10700, 10566, 10167, and 9166 nm/RIU; and the linear fitting constants are 0.98025, 0.97387, 0.96597, and 0.95507, respectively. In short, the RI sensor has the advantages of tunability, wide range, and high sensitivity, and is expected to be applied in various fields.
Funder
Hebei University of Science and Technology Talent Introduction Project
The College Young Talents Program of Hebei Province
Natural Science Foundation of Hebei Province
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献