Affiliation:
1. College of Engineering and Applied Sciences, Nanjing University
Abstract
Spatial light modulators can digitally manipulate the amplitude, phase, and polarization of light. Their counterparts in the terahertz band are highly pursued to meet the requirements of numerous applications such as wireless communications and biomedical detection. Here, we propose a spatial terahertz wave modulator based on a liquid-crystal-integrated metadevice. The modulator consists of 8 × 8 pixels. The liquid crystal layer is sandwiched between an asymmetric split ring resonator array and pixelated interdigital electrodes. Fano resonance occurs for the transmitted wave, while the reflected wave is perfectly absorbed. By separately driving the liquid crystal with pixelated interdigital electrodes, both the Fano resonance and absorption peak can be continuously tuned due to the variation in the environmental refractive index. This work provides a transflective spatial terahertz wave modulator that can dynamically reconfigure a terahertz wavefront.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Fundamental Research Funds for the Central Universities
Subject
Atomic and Molecular Physics, and Optics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献