Experimental verification of full-field accuracy in stereo-DIC based on the ESPI method

Author:

Xu Xiangyang1,Ma Yinhang1ORCID,Shao Xinxing1ORCID,He Xiaoyuan1,Quan Chenggen2ORCID

Affiliation:

1. Southeast University

2. National University of Singapore

Abstract

This paper proposes a method to merge stereo-digital image correlation (DIC) and electronic speckle pattern interferometry (ESPI) data by camera calibration. The proposed method is employed to verify the accuracy of full-field out-of-plate displacements measured by stereo-DIC in a cantilever beam test. The mean absolute error and the root mean square error (RMSE) of the full-field displacement measured by four-megapixel cameras are 0.849 µm and 1.08 µm at 60 mm field of view, respectively, and the RMSE of the central area is 0.615 µm. The errors are not uniformly distributed because of the imperfect calibration. When the lenses are changed and the field of view reaches 120 mm, the RMSE is 1.48 µm with uniform distribution. These accuracies could be traced back to the laser wavelength to confirm the stereo-DIC data. The proposed method can be used not only to verify the full-field measurement accuracy of DIC but also to determine the rigid-body displacement for ESPI with a high-precision stereo-DIC. Thus, the displacement vector can be obtained. Furthermore, it can unify the coordinate of multiple ESPI systems to achieve a large range of high-precision three-dimensional deformation measurements.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3