Long-range Fourier ptychographic imaging of the dynamic object with a single camera

Author:

Jiang Runbo123,Shi Dongfeng12ORCID,Wang Yingjian12

Affiliation:

1. Chinese Academy of Sciences

2. Advanced Laser Technology Laboratory of Anhui Province

3. University of Science and Technology of China

Abstract

Fourier ptychographic imaging technology is a new imaging method proposed in recent years. This technology captures multiple low-resolution images, and synthesizes them into a high-resolution image in the Fourier domain by a phase retrieval algorithm, breaking through the diffraction limit of the lens. In the field of macroscopic Fourier ptychographic imaging, most of the existing research generally focus on high-resolution imaging of static objects, and applying Fourier ptychographic imaging technology to dynamic objects is a hot research area now. At present, most of the researches are to use camera arrays combined with multiplexed lighting, deep learning or other algorithms, but the implementation of these methods is complicated or costly. Based on the diffraction theory of Fourier optics, this paper proposes that by expanding and focusing the illumination area, we can apply Fourier ptychographic imaging technology with a single camera to moving objects within a certain range. Theoretical analysis and experiments prove the feasibility of the proposed method. We successfully achieve high-resolution imaging of the dynamic object, increasing the resolution by about 2.5 times. This paper also researches the impact of speckles in the illuminated area on imaging results and proposes a processing method to reduce the impact of speckles.

Funder

Foundation of Key Laboratory of Science and Technology Innovation of Chinese Academy of Sciences

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3