Design of compact off-axis freeform imaging systems based on optical-digital joint optimization

Author:

Yang Tong1,Xu Huiming,Cheng DewenORCID,Wang Yongtian1

Affiliation:

1. Beijing Institute of Technology

Abstract

Using a freeform optical surface can effectively reduce the imaging system weight and volume while maintaining good performance and advanced system specifications. But it is still very difficult for traditional freeform surface design when ultra-small system volume or ultra-few elements are required. Considering the images generated by the system can be recovered by digital image processing, in this paper, we proposed a design method of compact and simplified off-axis freeform imaging systems using optical-digital joint design process, which fully integrates the design of a geometric freeform system and the image recovery neural network. This design method works for off-axis nonsymmetric system structure and multiple freeform surfaces with complicated surface expression. The overall design framework, ray tracing, image simulation and recovery, and loss function establishment are demonstrated. We use two design examples to show the feasibility and effect of the framework. One is a freeform three-mirror system with a much smaller volume than a traditional freeform three-mirror reference design. The other is a freeform two-mirror system whose element number is reduced compared with the three-mirror system. Ultra-compact and/or simplified freeform system structure as well as good output recovered images can be realized.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Young Elite Scientist Sponsorship Program by CAST

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3