Affiliation:
1. Xiangtan University
2. Southeast University
3. Hefei University of Technology
Abstract
In this Letter, we propose a novel, to the best of our knowledge, dual-mode tunable absorber that utilizes quasi-bound states in the continuum (q-BIC) based on the periodically arranged silicon cylinders tetramer. By introducing asymmetry perturbation through manipulating the diameters of diagonal cylinders in the all-dielectric structure, the symmetry-protected BIC (SP-BIC) transforms into q-BIC, leading to the emergence of one transmission and one reflection Fano-like resonant mode. The relationship between the quality factor of each mode and the asymmetry parameter α is analyzed, revealing an exponential dependence with an exponent of −1.75, i.e., Q ∝ α−1.75. To explain the underlying physics, multipole decomposition analysis and Aleksandra’s theory are applied. Subsequently, a monolayer graphene is introduced to the all-dielectric structure to demonstrate the application of the dual-mode tunable absorber. When the critical coupling condition is satisfied, each mode can achieve the theoretical maximum absorption, demonstrating the distinctive capability of our proposed absorber for tuning and efficient light absorption. This research provides valuable insights into light–matter interactions and opens up possibilities for optical modulation and the development of graphene-based devices.
Funder
State Key Laboratory of Millimeter Waves
Fundamental Research Funds for the Central Universities
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献