Free-space transmission of picosecond-level, high-speed optical pulse streams in the 3 µm band

Author:

Su Yulong,Tian Wenlong,Yu Yang1,Meng Jiacheng23,Zheng Yunqiang23,Jia Shuaiwei23,Xie Zhuang23,Wang Yishan23,Zhu JiangfengORCID,Wang Wei23

Affiliation:

1. Xidian University

2. Chinese Academy of Sciences (CAS)

3. University of Chinese Academy of Sciences

Abstract

The utilization of mid-infrared (mid-IR) light spanning the 3-5 µm range presents notable merits over the 1.5 µm band when operating in adverse atmospheric conditions. Consequently, it emerges as a promising prospect for serving as optical carriers in free-space communication (FSO) through atmospheric channels. However, due to the insufficient performance level of devices in the mid-IR band, the capability of mid-IR communication is hindered in terms of transmission capacity and signal format. In this study, we conduct experimental investigations on the transmission of time-domain multiplexed ultra-short optical pulse streams, with a pulse width of 1.8 ps and a data rate of up to 40 Gbps at 3.6 µm, based on the difference frequency generation (DFG) effect. The mid-IR transmitter realizes an effective wavelength conversion of optical time division multiplexing (OTDM) signals from 1.5 µm to 3.6 µm, and the obtained power of the 40 Gbps mid-IR OTDM signal at the optimum temperature of 54.8 °C is 7.4 dBm. The mid-IR receiver successfully achieves the regeneration of the 40 Gbps 1.5 µm OTDM signal, and the corresponding regenerated power at the optimum temperature of 51.5 °C is -30.56 dBm. Detailed results pertaining to the demodulation of regeneration 1.5 µm OTDM signal have been acquired, encompassing parameters such as pulse waveform diagram, bit error rate (BER), and Q factor. The estimated power penalty of the 40 Gbps mid-IR OTDM transmission is 2.4 dB at a BER of 1E-6, compared with the back-to-back (BTB) transmission. Moreover, it is feasible by using chirped PPLN crystals with wider bandwidth to increase the data rate to the order of one hundred gigabits.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi Province

Open Research Fund of State Key Laboratory of Transient Optics and Photonics

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3